MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes
نویسندگان
چکیده
Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids.
منابع مشابه
Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN
BACKGROUND Accumulating evidence suggested that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics, both of which contribute to tumor invasion and metastasis, are interrelated with miR-21. MiR-21 is one of the important microRNAs associated with tumor progression and metastasis, but the molecular mechanisms underlying EMT and CSC phenotype during miR-21 contribut...
متن کاملmiR-21 and KLF4 jointly augment epithelial-mesenchymal transition via the Akt/ERK1/2 pathway
miR-21 induces epithelial-mesenchymal transition (EMT) of human cholangiocarcinoma (CCA) cells. However, the mechanism by which this occurs remains unclear. In the present study, high throughput platform was employed to detect the genes that are differential expressed in QBC939 cells transfected with a hsa-miR-21 antagomir or control vectors. The EMT-related Krüppel-like factor 4 (KLF4) gene wa...
متن کاملUpregulated TRIM29 promotes proliferation and metastasis of nasopharyngeal carcinoma via PTEN/AKT/mTOR signal pathway
Tripartite motif-containing 29 (TRIM29) has been reported to be dysregulated in human cancers. Up-regulation of TRIM29 was first observed in NPC cell lines by a genome-wide transcriptome analysis in our previous study. However, its expression biological function and clinical significance in nasopharyngeal carcinoma (NPC) remain unclear. In this study, TRIM29 expression was validated by qRT-PCR ...
متن کاملLow adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells
Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH act...
متن کاملThe role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor
Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression. In this study, we aimed to assess the potential impacts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016